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Summary

Feédback for the control of distributed parameter
systems that incorporate spatial and temporal sampling is
studied. A method that uses a modal approach is developed
for the stability analysis of such systems. To illustrate
application of this method, the stability of a simple
distributed parameter electromechanical system is examined.
The electromechanical system analyzed is one that has been
used to model electric field control of Rayleigh-Taylor

instability at fluid-fluid interfaces.



Introduction

Questions concerning the control and stability of contin-

uum or distributed parameter systems appear in such diverse
areas as aerodynamics, plasma physics, electrohydrodynamics,
structural mechanics and the technologies of nuclear reactors,
particle accelerators and chemical reactors.

In boundary layer flow (1), thermonuclear machines (2),
magnetohydrodynamic channel flows (3), and electric field levi-
tation (4), stability is a primary consideration. Feedback
methods are used or have been proposed to control particle beams
in accelerators (5), spatial oscillations in nuclear reactors (6),
fluids in normally unstable configurations (7) and processes in
chemical reactors (8,9,10). Although most of the reports about
distributed parameter control systems have been in the context
of specific problems, a general theory of distributed parameter
control systems is developing (11, 12, 13, 14, 15, 16, 17).

The ideal way to control a distributed parameter system
would be to measure a variable describing the state of the sys-
tem at each point, and feed back to the point a function of this
describing variable as a controlling force. Generally, one is
limited to spatially sampling the describing variable, and apply-
ing the controlling force over a finite region of the continuum.
It is an intuitive notion that, as the number of sampling stations
is increased, better control can be exerted over the continuum.
For a system with a large number of sampling stations, it is not
practical to make the feedback circuitry for each station inde-
pendent of that for the other stations. A type of scanning or
time-sharing scheme capable of reducing the hardware requirements

is desirable; such a time-sharing system would scan the continuum,



examining each sampling point every T seconds.

This paper presents a method for stability analysis of
distributed parameter feedback systems that incorporate both
spatial and temporal sampling. This method is applicable to
systems whose open loop dynamics can be described in terms of
spatial modes.

The distributed parameter feedback problem to be analyzed
is described in Section II. In the third section, the partial
differential equation describing the closed system is manipu-
lated into a first order difference equation. The stability of
the system is then determined by examining the stability of the
difference equation. To illustrate the use of the method
developed in Section III, the stability of a simple electro-
mechanical system is analyzed in Section IV. The system anal-
yzed is one that has beenused to model electric field control

of Rayleigh-Taylor instability (3) at fluid-fluid interfaces (7).

Spatially and Temporally Sampled Feedback

Consider a continuum divided into S regions (see Fig. 1)
and a variable £(x,t), associated with the continuum, that is

described by the partial differential equation:

£ - rg+s (1)

The matrix L is n x n and is the sum of A, a constant matrix, and
D, a matrix whose components are spatial differential operators.
The feedback force f that controls the variable £ over the con-

tinuum is spatially and temporally discrete.




For linear feedback, the feedback force to the ith

region, Ri’ can be written:

f =M¢E(r .

t M ., t..) ; for t:J<t<tJ+1
where M is the feedback gain matrix, I is the position* within
Ri at which £ is measured, tij is the time at which £ was mea-

sured and (t - tj) is the length of time over which the force

j+1
remains unchanged.

An expression for the feedback term for uniform temporal
sampling** of an S-region system can be obtained with the aid
of Tables 1 and 2. At time (BS+k)t the (k+1)5% region is
sampled, and the controlling force at the (k+1)St region chan-
ges from M £ (xr +1,(BS -S+k)1) to M g(rk+-1’(BS+-k)T) while the
controlling forces applied to the other regions remain unchanged.
The force that is applied to the continuum during the interval,
(BS+k)T <t <(BS+ ktl)t is tabulated in Table 2; £ for region R.l

can be written:

=

E(r,, BS+i-1)t ) ; 1<igk+l
£ = " (2)
M é(zi’ BS=-S+i-Dr1) ; kt+ 2 <SS

for (BS + k)T <t< (BS+k+1)r

* Schemes that feed back to R1 a weighted average of £ over
R. can be analyzed with the method that is developed. Single
pOLnt feedback is chosen for illustrative simplicity.

# The method of stability analysis that is developed does not
require uniform temporal sampling. Uniform temporal sampling
is chosen for illustrative simplicity.
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Region Feedback  (f)
R, M £(z,,PST)
R, M 3(22,(53*'1)T)
R, M E(r,, (S + k=1)7)
R 4o M E(g 4 5, (BS - Stk+1) 1)
Ry | M E@, (BS-DT)
TABLE 2

The entry for region Ri is the feedback force applied to
region Ri during the time interval (BS+k)t <t < (BS+kt+tD)T

We wish to develop a method for determining if the sys-
tem described by equations (1) and (2) is asymptotically
stable ( lim £(x,t) = 0).

t—o -
The class of systems considered is restricted to those

for which the open loop solution (f = 0) is of the form:

o0

£ (r,t) =Z z (£) & (1)

m=1
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The problem is further restricted by including only those
systems for which the spatial modes'{¢h (g)} are orthonormal
in some sense over the continuum.* Under these restrictions,

the open loop equation is equivalent to a set of pairs of equa-

tions:
Q@m(£) = Qm(z) Em (3a)
z, =@+E)z (3b)
m=1, 2, 3,

ITI. A Method of Stability Analysis

The orthononormality of the {?m(gi} makes it possible to

write f as: ©

e - ) 50 ©
m=1
S
where im = éz;l al(m)n_g(gi,tik) and (for systems whose spatial

modes satisfy Sturm-Liouville equations):

* For the case when £ is two-dimensional, the highest spatial
derivative in D is second order and the equation Dd = E¢ is
separable in some coordinate system; the functions @m(xl),
@m(xz), ®m(x3) into which @m(g) is separable satisfy Sturm-
Liouville equations and the orthonormality condition:

boundary b

CI)m(Xi.) CI)n(xi)q(xi)dxi B 6mn
boundary a

Other systems may satisfy other orthonormality conditions.




a;(m) = [ ¢ (£)q(x)dr

Ry

The orthonormal properties of the {@m(gi} are again used to

write the solution to the closed loop equation as:

0

£, =2 w () (D)

m=1

Equations (1) and (3.a) require that:

w = (A+E)w + £ ; m=1,2,3 .... (4)
—m =  ~“m’-m “m

Note that, while the spatial dependence is implicit in
equation (4), the explicit spatial nature of the problem has
vanished. Thus, the problem is now essentially one of an
infinite number of coupled, lumped modes. On physical grounds
it is apparent that an accurate description of the dynamics of
the system can be obtained by considering a finite number,

of these modes, and by approximating £(r,t) as:

a

£(x,0) -“—-Z w (6 (r)

m=1

It is convenient at this point to define a state vector x :

X satisfies the equation:

£ =Bx+tg ; (BS+ k)t <t < (BS+k+ 1)t



where: .o~ and f
- =1
B -9 -
. g~
A+E f
= =a
S
Using the result obtained in the appendix, that g =Z 9-1'. _)g(tiB),
i=1

where the G, are the functions of the ai(m), <I>m(£i) and M and

where tiB = (BS + (i-1)]r : 1<i<k + 1 ,
[BS+S+(1i-1)]r ; k+2<i<S
the state equation may be written:
S
x=Bx+ Z G, x (t;5) 5 (BSHR)TSt L(BS+Hk+1)r
i=1

(5)
The solution to equation (5) valid for (BS + k)7 <t <(BS+k+ D

is:

x (1) = B[t~ BSHOT] riasiiyr)

S
Blt-(BS+WT] _ -1
+1= (e I]B G, z(tis)
At t = (BS + k + 1)r:
B S
x[(BS+k+Dt] = e= x [(BS+K)T] + P, x (tiﬁ) (6)
i=1
where g.l, = [eET— I) g-lgi . Difference equation (6) relates the

state of the system at time (BS + k + 1)1 to the
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states of the system at (8S + k)r, (BS + k - )7, ... (BS + k-S+Dr.
To determine system stability, we use standard techniques for

analyzing difference equations.* In the appendix, the S equations

represented by equation (6) are combined to obtain the single

equation:
x[(m+S)r) = Q) x(mr) +Q, x[(m-1)r] + Qg x[(m=2)7] + .

98-1.5[(m + 22— 8S)1] + QS x[(m+1-S)t] (7)

where m = BS. This (2S - 1) order difference equation may be re-

duced to the first order equation:

X[@+Dr]=Q X (mT) (8)
where 51(mT)
X (mr) = ; x, (kT) = x(kt +(1= D))

ES(mT’

and 0 1 0 0
0 0 I V)

o -

0 0 o 1
91 gz 93 . . . QS

Equation (8) is asymptotically stable when the magnitude of the
eigenvalues of Q are less than one (|2(Q)!<1l). The positions of
the eigenvalues of the (n S)x(n S) matrix Q determine the stability
of the S- station nth order distributed parameter system.

It is evident from equation (5) that, in contrast to continu-

ous time feedback, temporally sampled feedback leaves the open loop

* See for example: David P. Lindorff, Theory of Sampled-Data
Control Systems, Wiley, 1965
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natural frequencies of the system unchanged. Whereas con-

tinuous time feedback stabilizes by forcing the natural frequencies
into the left half plane (s- plane), discrete time feedback sta-
bilizes by forcing the ''discrete natural frequencies' (the eigen-
values of difference equation (8)) into the unit circle (of the

A plane).

An Example

The stability of the feedback system shown iﬁ figure (2.a)
will be analyzed to demonstrate application of the method and to
illustrate some effects of temporal sampling. This situation is
of interest, for it is one that is used to model the system indi-
cated schematically in figure (2.b) of a conducting liquid sup-
ported against gravity by hydrostatic pressure(7’ 18, 19). With
no feedback, the system in figure (2.b) is unstable; v(r,t)
represents electric field feedback used to stabilize the Rayleigh-

Taylor instability at the liquid-gas interface. The instability
=Jdl "wd

that results in figure (2.a) when V_ exceeds V = AS is
o max 2¢ L
mathematically similar but less complex than the Rayleigh-

Taylor interface instability. The use of v(y,t) to stabilize the
membrane system for values of Vo greater than Vmax corresponds in
a rough way to the use of electric field feedback to stabilize
the liquid-gas interface in figure (2.b).

The linearized equation of motion for transverse displace-

ments £(y,t), of the conducting membrane is:

2
a2E _ TBZE 3 | ZeOVO 2t—:oVo
P 2 2 = 6at 3 £ — 2 v . (9)
ot dy d d
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where p is the mass per unit area, B is the effective damping
coefficient, and T is the tension per unit depth. For purposes
of illustration and ease of computation, S is taken to be one,
Y1 to be L/2 and only the displacement, &(yl,kf), is fed back:
v(y,t) = AQ(L/Z,kT); kT {t i(k + 1)t. Equation (9) may be

rewritten in the form of equation (1):

s [ 0, 1> e\ /o o\ /e, ¢z
——— - +
St \ey) T le S mn ) ey )Tl o), 2k
dy ’
2 (10)
h e {; = £ £ = Qg- 9 = T/ A = 6/ N = E.e_o.\i._
wher 21 >y 59 Bt’ P P d3
2e V P
and M = o0
pd

We wish to find the region in M-N-t-A space in which the
membrane is stable; if the feedback is effective, the system
will be stable for N>N (N = N(V )) for some values of

max = max max
M,A,T.

Melcher(l)

has examined spatially sampled feedback applied
to lossless membranes (A =0, v = 0); figure (3) is a summary of
his results for S = 1,2,3,4 and S-»> «» . These results indicate
that the region of stability in the N=M plane enlarges while retain-
ing approximately the same shape as S increases. While we consider
only a single station, on the basis of Melcher's results we can
conjecture that, with a temporally sampled system, the region
of stability enlarges while retaining the same basic shape as
the number of stations is increased.

A typical spatially sampled system (S = 4) is stable to the
left of line 1 (refer to figure (3)), to the left of line 2, and
below line 3. The instability that occurs to the right of line 1

is a static (purely exponential) instability that results because
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The feedback gain M is not large enough to counteract the
unstabilizing effect of Vo' The feedback system is unable to
control the spatial modes whose nodes occur at the sampling
points; the static instability to the right of line 2 results
when one of the unmonitored modes becomes unstable. Above line
3, overstability (instability characterized by growing oscilla-
tions) occurs as a result of overly compensating for the unsta-
bilizing effect of Vo' Systems that feed back a spatial average
(over Ri) rather than a single point value of £ do not exhibit
this overstability; averaging schemes do, however, exhibit
instability to the right of line 2.

It follows from equation (10) that:

s 9 1), p- o2 O\ anam-(09 O
N -A 02 o -M 0
ay2 :

For this system, the {@m(yi} ,

- [2 gty o /2
®m(y) = V/ T sin =7 T sink y

are clearly orthonormal and complete over (0,L)

The eigenmatrix E  is: 0 0
E = -9k2 0
-m m

and f is:
~m

0
2/E1LM€( L/zskfi> ; m odd.

mm

£ =
m 0 ; m even-
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Melcher(l) argues that a must be at least 2S + 1 to obtain an
accurate description of the dynamics of the system. For a = 3,

the equation for the state vector x, is:

A+E 0 0 /9
- -1 - - / E(L/2,kT)
0 A+E, 0 |x+ 2YAM /g
=7 A+E,| oo
E(L/2 kT)
‘ 3
or: x =Bx+Gx (k)
Where gl is the matrix:
0 0 0 0 0 0
-4M . -GM | -4M
— sin klyl 0 T sin k2y1 0 7 sin k3y1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
- 0 =S 0 . 0
37 sin kly1 3r sin k2y1 T sin k3y1

The state vector satisfies the difference equation:

x [(k + D] = 4 g(kr)+'(e§T-L)§f1 G, x (kt)

1

and so Q is the 6 x 6 matrix:

2"+ (2"- DBt ¢
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The eigenvalue equation, det(IN-Q) = 0, factors into a second
. . +
order equation and a fourth order equation. Setting A = %:fi

transforms the requirement that [A|<1 into the requirement that

Re(s) < 0. Application of the Routh-Hurwitz conditions to insure
*

Re(s) <0 results in the following conditions (valid for small T)

that must be satisfied for the system to be stable:

(@) A' >0
(b) N < br?
| ]
@ a' =20+ &y >0
1] [ ] 1 1
@ N'2-@qor+ gM '+ 108LT or? + l“;—f—m'— 13Tr2)T/Tn=1>0
1 1 '2 1
3 3r 3v
2
]
+ M'yr - 8M2 )'t'/Tn=1 >0
971
2
&) M'? - 3Taer? - aom -2 nrar? = 1er® - 5ot 2P
2 12 5 3
+ 2{3 Sou e G2 % 4 antaty - 5180 - 240 - 22 Ty
Lawatte? uswat®  oniaty aza®at o oassrfad o
8 7 8 8 8 n=1 |

)
where A' = [£5 A ;M' = £ M ; N =~ Nand T = %/Zzz:?=
V L TLZ L2 n=1 2

period of the n = 1 mode with V0 =0 and v(y,t) = 0.

* T4 D
(6k

N
!
N

2
-~ N~ 274)

[
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These inequalities define a region in M'-N'-A'-t sﬂace (or
M'-N' space with A' and T as parameters) in which the membrane
system is stable. The stable regions for a lightly damped sys-
tem (a liquid like water) and for a heavily damped system (a
liquid like glycerine or molten glass) are plotted in figure
(4.a) and figure (4.b) for various sampling rates.

From figure (4) it is evident that the major effect of tem-
poral sampling on this system is to make itvmore susceptible to
overstability. Additional analysis shows that a lossless system
is always overstable to temporal sampling. Stability of a system
incorporating temporal sampling is made possible only by the pre-
sence of loss. This sensitivity to overstability is not surprising,
for if Tt is too large, there is an effective lag in the feedback
loop that results in a net addition of energy to the membrane
for each membrane oscillation, rather than a net removal of ener-
gy for each oscillation.

The price paid for the introduction of temporal sampling, in
order to reduce the hardware requirements of a distributed para-
meter feedback system, is the increased susceptibility of the

system to overstability.

Conclusion

Application of the method developed for the analysis of
spatially and temporally sampled feedback is conceptually straight-
forward: to determine stability, examine the locations of the
eigenvalues of a matrix. However, for even the simplest cases,

(n = 2), this matrix must be at least (482+ 28)x(4$2+ 2S) to re-

resent the system accurately. Therefore, while application of the
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method to an S- station system is straightforward, S neet not

be very large before the amount of computation required makes
implementation of the method unattractive. Although a complete
analysis of an S- station system, resulting in definition of the
stable region in terms of the feedback gain, sampling rate, etc.,
might be unmanageable, the following type of partial analysis will

yield parameter values that insure stability:

(1) Completely analyze the system for the case of S =1

or S = 2, and choose parameter values (M,N,t ...) that

insure stability;

(2) Use these parameter values to examine the positions of
the eigenvalues for the S- station system;
(3)
a) If the S- station system is found to be stable but the
parameter values are not as desired (perhaps N is too

small), increment the values and repeat (2).

b) If the S- station system is unstable, change the para-
meter values slightly and repeat (2).

(7)

Melcher's results indicate that the major change in stability
properties as S increases is a change in the scales of the M and
N axes. This suggests scaling the parameter values found in (1)
before advancing to step (2). The details of this scaling be-
havior are under investigation.

To a certain extent, the increasing complexity of the sta-
bility analysis with increasing S is due to the inclusion of the
effects of spatial boundaries. For many fluid systems, the boun-
daries have negligible effect on the system dynamics. For such

continuum systems, Fourier transform or wavetrain techniques have
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been successfully applied to the analysis of feedback systems
incorporating large numbers of spatial samples(7’19) ; such
techniques may also prove useful for reducing the complexity of
analysis of systems incorporating temporal sampling in conjunc-

tion with a large number of spatial samples.
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Appendix

Evaluation of g:

ES] fa (D WAt
£ S a;(2) ME (xr;,t;0)
-

agj(@ M E(x;,t.0)

Consider the following four (na)x(na) matrices:

a; (1) \
*a. (1)
* a(?
=id ~ ) °a§2) &
0 1
- " 3
T-' +a; ()
i T a, (a)
f‘ —.na — 4—>|
M 0
o M

(M is nxn)

[e)
[e

|
%

~

na




Appendix (Cont.)

¢1(fi) N
CI>1(ri)(r
i
" (r.,) 0
. r
. K i -
1 na
@ [ ]
—id [
Q n *3'1
@a(ri)
¢a(ri)
Y
K .
11
. - [11
“na

(I is the nxn identity

matrix)

I—
.

I . .
F’ na
It is a straightforward matter to verify that g may be expressed

in terms of these matrices, as:

S

&= ;19‘-1 My Lna 214 X (F1p)
Defining gi = éid gd Lna gid enables g to be written:

S

i=1




Appendix (continued)

2. Manipulation of difference equation (6):

x[BS + k + 1)r] = eyz( (BS+Kk)T] + i;igi 5(ti6) (6)

Let BS = M

k=0: x[(@+Dr] = e2xM)+ Bx M1) + By x[ M- )]
+ 35-1 x[ (M—Z)T]+...+23§[ M+2-9)7]
+ 221{- [M+1-9)T)

ko= 1i x[01+2)7] = e[ Qi+ 1)7]+ B, x[ M +1)7]+ B x(1r)

+ ESK[ M-Dr)+... +B3§[ M+ 2-9)1)]

k=8-1: x[M+8)7] = 2" x[ M+ 8= 1))+ Box[ (1+ S)7)
+ E‘S-l x[(M+ S-2)T]+.. .+_13_25[ M+ 1)1]
+ _1:1 x(MT)

If the k = 0 through k = S-2 equations are substituted into
the k = S-1 equation, the following equation results:
x[(M+5)1] =Q; x(M1) + Qx[(M-1)7]+ Q3 x[(M-2)7] + .

+ QS 1 2 x[(M+2-S)Tt] + QS x[(M+1-S8)7]

where:
Q, = B+ B, e B+ P {[e—+ P, ](e= +g1]+gl}+...
92‘P+P{[e—+P +I}+ ....... ] B,
Qg = [B, + B (eET4 p )+ 24{[e§T+ B Jle2 By I+ _13}

+ ... P,
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Figure 1

A continuum divided into S regions. Associated

with the continuum is the variable £(r,t).
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(a) The one-dimensional conducting membrane system
(b) Conducting fluid supported against gravity by hydrostatic

pressure. Electric fields are used to stabilize the liquid-

gas interface.




Figure 3

(7)

M-N plane plot of Melcher's results for one, two,

three, four, and infinite station systems.
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Figure 4.a

Stability characteristics of a lightly damped system
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Figure 4.b

Stability characteristics of a heavily damped system



